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Abstract

o
g

A
Two methods have been used to speed up the execution of computation. One is the

5

technology insertion and the other is new architectural concepts. Regardless of the type

]

of architecture development the result is a parallel computer systems with a large

=4

E:: number of processing elements. The communication requirements between the

.;::) processing elements will lead to the need for a large interconnection networks.

~ In this research a property of interconnection networks called partitionability is

:; studied. The advantages and uses of partitionable networks were described in number

- of papers. The partitionability informally means that the system can be divided into

‘:5" several parts each of which has certain amount of behavioral independence.

’i Several researchers have analyzed both topologically regular and irregular

interconnection networks with respect to the partitionability property.

tﬁ In this work the concern is synthesis techniques of partitionable networks. Two

i algorithms are developed each capable of synthesizing a class of partitionable !&

‘ interconnection networks. The generated classes are informally described. ?

!

5
oo

Ly I Introduction

Two methods have been used to speed up the execution of computation. One is the

o,

technology insertion and the other is new architectural concepts. Regardless of the type

]

of architecture development the result is a parallel computer systems with a large P‘R

number of processing elements. The communication requirements between the

e
’g

processing elements will lead to the need for a large interconnection networks.
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In this research a property of interconnection networks called partitionability is
studied. The partitionability informally means that the system can be divided into

several parts each of which has certain amount of behavioral independence.

The partitionability of Banyan networks was shown in [Gok76, GoL73]. The
partitionability of the Cube network was anzlyzed in [SiM81b) and ADM in [SiMS81a).
Partitionability of topologically arbitrary single stage networks was studied in [SeS85].
The quotient property (which is related to partitionability) of several well known

networks was studied in [FiF82].

As it can be seen, most work has been done in analysis and little has been done in
the synthesis area. In this paper the synthesis of multistage partitionable
interconnection networks is studied. Two algorithms are developed each of which is

capable of generating a class of partitionable networks.

Partitionable networks have the following uses and advantages. They can be used
to allocate a proportional number of processors to the computational and
communication needs of a task in a multitasking system. This method of allocation is
used in systems such as PASM currently developed at Purdue University [SiS81]. The
partitioning property provides a natural protection amongst users in a multiuser
environment. That is accomplished by giving each user a segment of the system which
will provide a hardware protection amongst users. The implementation of the routing
of the data path and control is efficient on VLSI substrate or on printed circuit board
(PCB). In the case of fault in a part of the network, a method of graceful degradation is
possible by an easy migration of the program to the correctly operating sections. The
partitionable network forms the basis of a certain class of fault tolerant networks. The
network Extra Stage Cube [AdS82] has a type of fault tolerance that can be traced to

the necessary condition of partitionability of the core of the network. The Extra Stage

Cube is single switch, single link fault tolerant however the idea can be generalized into
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multiple faults using a properly partitionable network core. In the Star system the
baseline partitionable network is used because of its ability to establish partitions
corresponding to the computational structures of the algorithm [AgY85, WuF82]. The
partitionable property of networks is an essential element in the modular expansion of

dynamic systems [ViK80).

II Overview

In Section III the basic notation and definitions are presented. In Section IV the
necessary background on single stage network is presented and partitionability
properties of single stage networks are described. In Section V the multistage networks
are discussed. A graph/algebraic model is developed and two classes of partitionable
networks are defined. A methodology to synthesize each class is presented and proven

correct. In Section VI the global conclusion is presented.

III Basic Concepts

In this section, basic definitions and notation needed as the background for the rest
of the paper are introduced. Some of the definitions can be found in books on basic
abstract algebra [Han68, Her75] and graph theory [BoM76, Har69], however are

included here for completeness. This material was developed in [SeS84].

Let the set of input labels of a graph/algebraic structure be denoted by V; and the
set of output labels of the structure be denoted by V. All graph/algebraic structures

defined in this paper over V| x Vg will assume that V| M Ve =0,V 7&4 0.Vp 75 0,
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! i where O is the empty set and Vi xVp = {<va,vb> |va EVpv € Vo}. E
! ¥,
| o
‘ ﬁ The following notation will be used throughout this paper. The symbols are lj.':f_
v ' R
e enclosed in a pair of double quotation marks. o
o “{”,“}” - delimiters for set. “(",*)" - function application and grouping of operations. ; "
- '.'I_T
“<?,4>" - delimiters for n-tuple. “[","]” - used as defined in context. o
2 N
{4 Definition 8.1: i
-
Let A be a set, then P[A] & {B | BC A} is the power set of A. Ny
't"'-
o). :-".
Definition 8.2: __::.
¥
Let C,, € P[V]| x Vg, then C_, is an I/O correspondence over V; x V. et
oy @
Definition 8.8: N
,'.‘:\
Let Cp, € P[V] x V(] such that <v,,vy>, <v.,vq4> € C, = v, 5 vg, then the ::ﬁ:
C,, is a nondestructive 1/O correspondence over V; x V. (Physically, Cp :A, 3
.‘. l.
r -
represents one state of a network). ;::
-"\ >
L
- . . .. \-
Definition 8.4: :";:
Let C[Vy x Vo] & {Cm € P[V] x Vg | Cp is nondestructive}. Then C[V} x Vg _.:
ENN
is called the C-set over Vi x V. o
ot
e
Definition 8.5: -'J‘
Let Cp, € C[V; x Vo), then s(Cp) & {val <V, Vp> € Cm} is the source set of ‘\,
SR
Chm- ; _._, ,
Definition 8.6: 2
A . . e
Let C, € C[Vy x V), then d(Cp) 2 {vb|<va,vb> € Cm} is the destination ‘_\{
AR
B
set of C,. \:_(:'
L'x; ).1;
o
N
LSS
:'_:":\_
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Definition 8.7:
Let C = {C,| m=1.2,..n} C C[V; x Vo], then s(C) & U s(C,,) is the source
m
set of C and d(C) & U d(C,) is the destination set of C.
m

Definition 8.8:

Let V be a set of labels. Let E C V x V, then G = <V,E> is called a graph.

IV Single Stage Interconnection Networks

This section consists of three subsections. The first subsection describes the model
of single stage network used later to construct multistage networks. The second
subsection defines and discusses the basic composition and decomposition of networks.
The third subsection uses the decomposition concepts to define partitionability of single
stage networks which is used in the next section to discuss the partitionability of
multistage networks. Partitionability informally means that the network can be
decomposed into two parts with certain degree of independence. The definitions and
theorems discussed in this section were developed in [SeS84, SeS85] and are presented

here (without proofs) for completeness.

In this subsection, a formal graph/algebraic model of an interconnection network is
presented. Graph models for analyzing networks have been used by other researchers.
For example, in [Gok76, GoL73, LiM82, Upp81] they are used to analyze regular SW
Banyan networks, and in [FiF82] they are used to study the partitioning of regular
networks. The model presented here differs from [Gok76, GoL73, LiM82, Upp8&1] and

[FiF82] by being completely general so that it can be used to describe an arbitrary,

topologically regular and irregular, interconnection network. The model is similar to
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the one used by [MaM81] to study time space tradeoffs.
Definition 4.1:
Let K = <C> be such that:
(1) € C C[Vy x V).
(2) Vy=s(C)
(3) Vg =d(C).
If 'Cl 2 2 then K = <C> is an I/O representation of a reconfigurable

network over V; x V. If |C| = 1 then K = <C> is an I/O representation of

a fired network over Vi x V.

Physical implications: <v,vy> € C,,, Cy € C represents the network moving data
from input v, to output vy when the state of the network is C,. C represents the set of
all possible states of the reconfigurable network. For an example of a topologically

arbitrary interconnection network see Figure 1. The example has the following

parameters:

V)= {ua,ub.uc}, Vo = {vo,vl}, Co= {<ua,v0> <ua,v,>},
C; = {<u,,vp>, <up,v; >}, Cp = {<uy,vi>, <u,vo>},
C = {Cp,C1,Cy}. K= <{Co,C},Cp}>.
Definition 4.2:
Let K[V] x V(] _A__{K | K= <C> is a network over V|x Vo}. Then
K[V} x Vg) is called the K-set over V} x V.
Definition 4.8:
Let K!' € K[V}'xV{})], K! = <C'>, and K? € K[Vfx V3], K2 = <C?>, be two

networks such that:
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(1) VI CViVEC VR
(2) VvVclec! 3ciec?®:cl =cC2
Then K! is subnetwork of type ¢ of K*. Notation: K! Cc K2, The other types

are not used here and therefore they are not presented.

This subsection describes an ‘‘intra-stage™ composition and decomposition of single
stage networks. The discussion here is presented for the composition of two networks
into one and the decomposition of one network into two. However, it can be
generalized into the composition of n networks into one and decomposition of one
network into n, n>2. What is meant by the intra-stage composition of two networks
K! and K? is that V} [V V? =0 and VMV = 0. Similarly, the intra-stage
decomposition of K into two networks K! and K? will result in V}! (} V = © and
VL M V3 = 0. Two types of composition (decomposition) are described. One, the o-
composition (decomposition) corresponds to the physical situation where the controls of
the individual subnetworks of the network are independent. The other type is the 7-
composition (decomposition), which corresponds to the physical situation where the

controls of the individual subnetworks of the network are dependent upon one another.
Definition 4.4:
Let K! € K[V] x V§], K! = <C!'>, and K? € K[V} x V3], K2 = <C?>, be
two networks such that: (Vi U V)M (ViU V3) = 0. Define o-map as
follows: K! 0 K2 = <C'> 0 <C?> & <{clUC?| cjec, ctec}>.

This describes the composition of two networks where the controls of the two networks

are independent from one another.
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i Definition 4.5: P
b5t
. . . DY
ﬁ Let KE K[V x Vo] be a network. Let {K',K2,...K" | K'EK[V]x V}]} be a set o
5,: :-Pya
= of networks such that: KCc K!'oK?%0 - - + K. ::‘-:
n ) n . :
g Notice that this implies Vi = (JV}and Vg = JV}. Then N
= i=1 i=1 RN
NS
:‘éj (1) K' oK% 0 - - - K"is called a o-decomposition of K. Z‘_:‘:_Z';
n : A N
(8) K'is called a component network of K (K'is maybe itself decomposable). ®.
= o
2 In this second part of this subsection, the 7-composition and decomposition of two T
e
W~ networks will be discussed. In the o-composition, the two networks keep independent o '
N o
= controls, that is if CJ, is selected in K!, an arbitrary correspondence C? can be selected - 105
ﬁj in K2 In the r-composition, the two networks have joint control, that is if C] is
- selected in K!, the corresponding C;;’ must be selected in K2.
- | Definition 4.6: i
.. Let K'€K[V{ xV}], K!=<C'>, and K?EK[V{x V3], K*=<C*> be two B
o :.-::.:
networks such that: o
! (@) (Vi UVH M (v UVE) =0, and (b) |C] = |C?|. o
. Define 7,-map as follows:
o S
M (1)  Define a: C'—C?, map 1:1 and onto. T
L o : L
N 2) K'K’= <C'>r,<C?>4 <{clU c}|a«ch=ck clech oy
22 ok
"~ Cr €C } > ;\::‘-'
N N
W Definition 4.7: P
. , 7
N Let KEK[V| x Vg] be a network. Let {K!,K?...K"| K'EK[V]x V}]} be a set E::Q}'
-~ ,h\
' of networks such that: K=K'r,K?7, -+ K" Then (1) K' r, K7, - - - K" is .\:E::
2 :

called a -decomposition of K.

(3) K'is called a component network of K. (K' maybe itself decomposable).
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Definition 4.8:
Let K € K[V} x Vo], K = <C> be a network. K is a prime network iff K
cannot be decomposed as K Cc K! o K2
Definition 4.9:
Let K € K[V; x Vg], K = <C> be a network. If there exist K! € K[V} x V{,
K! = <C!'>, and K? € K[V} x V3], K2 = <C?>, two prime networks such
that: (1) V{ WVE = V}, and (2) V§ (V3 = Vo, then:
(1) IfK!7, K? =K, then K is a 7-partitionable network.
(2) I K!'oK?=K, then K is a strictly o-partitionable network.
(3) IfK!oK? DcK,then K is a o-partitionable network.
Note that r-partitionable implies |C| = lCll = |C2|, strictly o-partitionable implies
[C [ = IC’I x IC"’I. and o-partitionable implies [C l < lCl' x lC"’l.
In this subsection some basic concepts required to discuss the partitionability

property will be presented. The underlying graph of a network is defined and its

relationship to partitionability and other properties are discussed.
Definition 4.10:
Let K €K[V|x Vo], K = <C>. Let G[V; x Vo] & {<v,,v,> € Cp |
Cp, € C}. Then G[V] x Vo is the underlying graph of K.
Definition 4.11:
Let G[V| » V] be the underlying graph of K € K[V} x Vg]. Then the
connected subgraphs of G[V| x V] are called graph components of G[V] ~ Vol.
Notation: Graph components are denoted by G, Gy,...,G,. Denote the vertices
associated with G, by Vj; and Vo, V|, C V|, Vo, C Vp. In a component G, there exists
a path from each node to every other node and there is no path between any two nodes

from different components. Clearly G[V| x Vo] = UG, UWV,,=V, and
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Theorem 4.12:

Let K €K[V] x Vg], K= <C>. Let G be the underlying graph of K. K is a

4 "i'\" J

LA o]

prime network iff G has a single component. e

S

~. Definition 4.18: ‘:.:':‘,’:
. Let G[V] x Vg] be the underlying graph of K € K[V| x Vg], K = <C>. Let .-_:;!
X Cn € C and let G; be a component of G[V| x Vg]. Define the projection p of :r’:
b C,, onto G, as follows: p(C,,G;,) A {<va,vb> € Cm| <v,Vp> € G,}. J\;
Theorem 4.14: :\:

‘ e
‘ Let G[V| x V| be the underlying graph of K € K[V| x Vp], K = <C>. Let ?.;\
' C, € C and let {G],GQ,...,GD} be the set of all components of G[V; x Vgl. ::';{:J"_;\
Then Cp, = p(C,,G,) Wh(Cp,Gy) U+« p(CL, Gy "

: Definition 4.15: :.;
Let G[V| x V] be the underlying undirected graph of K € K[V| x Vo], K = f‘::"'

<C>. Let G, be a component of G[V] x Vg]. Define the residue set modulo G, ';

? as follows: r(G)2 {p(Cb,Gi) | VCbGC}. ';
Definition 4.16 :‘-j":"‘f.

Let G; be a component of the underlying graph G[V| x V] of K € K[\ » V],
L K = <C>. Let r(G,) be the residue set modulo G;, G, over V}, + V. then

<r(G;)> €K[V|; x Vg,] is called a component network of K denoted by
-, K(G,).

In this section the background on single stage networks was presented. This work

was developed in [SeS85] and is presented here for completeness only (without proofs). T

. o _\:
- Single stage network was defined and some basic properties of single stage partitionable AN
- LR S
NC A N

networks were presented. The single stage network together with some other concepts NN

T AN e e
EACR G
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will be used to discuss multistage networks in the next section.

~1¥¥2 .j
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V Multistage Interconnection Networks o
.:::
o~ At
-7 i
- In this section of multistage partitionable networks will be studied. First a e
9.
ff_: multistage network model is developed and then the multistage partitionable network is w7
defined. Two types of partitionable networks are defined and two methodologies are :',:
ot
developed each of which can be used to construct its class of partitionable networks. }fo-}
The material is presented for the case of partitionability of number of block networks e

of power of two however it can easily be generalized to powers of any integer.

Definition 5.1:

¥
4

Let C[V} x V{] and C[\'} = V3] be two C-sets. Define a map ~ as follows: ::
I 0 i o) N

. 1 ] ’2 2 ] 2 Y
Y C[\I X Vol s C[\ ] > \701 — C[\’l x VO]‘ ::.::
Dy

C,vCy A {<u,,v|> | <uy;vi> € C,, <y,vi> € Gy, j=k}.
Definition 5.2:

Let K" € K[V] » V{] be a single stage network. Let «'!' be a nondestructive
correspondence. W™ € C[VH! x V]|, s(w™ ") = VL, d(w!") = V[
Define o: W} oK' = <{w’_1'r v Cf | C/ € C’}>.
Note that w1 o K' € K[V~ x V.
Definition 5.8:

Let {Kr I r=0,1,...rn—l} be a set of single stage networks, K' € K[\'[ x V§).
Let {w’_“ | r-—-l.?,...m—l} be a set of correspondences, '~ € C[V& ! x V],

s(w' 1) = V&1, and d(w' 1) = V}.

. - - [2d . -
Define multistage network as follows: K® = %' ¢ K'cwt?c - K™7L
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Model similar to this was used by [Ben65] to study rearrangeable networks.
Notation:
Ki,j = Ko wi,i+l ° Ki+l . wi+l,i+2 o ¢ Kj, j > i+1, Ki'j — Ki, j=i.
Ch = Ciywhitly C*l y*li*2y o Ci 5> i41, CH = Ci, j=i.
Assume all K" are reconfigurable. The case of K’ fixed network can be handled by
absorbing it into the w'™!F and w*™*! for the purpose of the analysis. For an example of
an arbitrary multistage interconnection network see Figure 2.
Definition 5.4:
Let C, € C[V] x Vg|. If
(1) Vuyuy €V, v, EVy = <y,,vy> € C,, (1:1), and
(2) Vv.EVy Juy €Vy = <uyv.> € C,, (onto),
then C, is called permutation correspondence.
Note that this implies |\'l| = IVOl (finite sets) but not Vi = V.
Definition 5.5:
Let KEK[V;»x Vo, K=<C>. If VC,€C,C, is a permutation
correspondence then K is called permutation network.

In the rest of this paper the discussion will restricted to permutation networks in

particular the following assumptions are used hereafter.

W |V =N

(2) K',r=0.1,..m-1 is a permutation network.

(3) W', r=1,2,...m—1 is a permutation correspondence.
(4) logeN = m.

(5) mz22.
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Note that (2) and (3) = IV{' = |V6| = N, r=0,1,...m—1.
Definition 5.6:

Let K = K%™! be a multistage network. Firing K’ in C! means selecting
correspondence C{ € C" and holding the K" in that state.
Note that K™ fixed in CI € C' is equivalent to the fixed network K* = <{C{}>. Note
that K with K’ fixed is equivalent to K= K% !ow1ro <{C,{}> ow" o

Kr+1m=1 The K, j 7é r networks are called free networks (stages).

The following development will discuss the class of o-partitionable networks. It
will be assumed that the number of ”parts” is a power of two. This assumption is for
the ease of presentation only and it should be clear that all results here are valid (with

slight modifications) for number of ”parts” of power of any integer base.

Definition 5.7:
Let K be a multistage network K = K%™~!, K is stmply partitionable if fixing
K™ ! will produce two (data path independent) networks K™ 2 and K¢m~2
such that:
1)  sKI™?PeKP™m?) = s(KO™2),
(2)  dKE™ o KP™Y) = d(KOmT),
(3) KI™2oKO™? D¢ KOM-2,
The networks KQ™ 2 and K?™ 2 are called block networks. Note that for
permutation networks (as in this discussion) (3) implies (1) and (2).

Definition 5.8:
Let K be a multistage network K = K°®™ ! K is simply partitionable

isomorphic if fixing K™~! will produce two block networks K™% and K{™~2

such that:
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(1) K is simply partitionable with block networks K™% and K{™~2,
@ Kt akpet
Theorem 5.9:
Let K = K%™~!, K € K[V x V&7!] be a multistage network. Let K be simply
partitionable isomorphic with block networks K3™ 2 € K[Vfo X V6“,52] and
K{™2 € K[V{, x V872
Then V{5 WVP, = VP and V832 LVE2 = V&2
Proof:
K°%™=1 permutation network and K™ 2 ¢ K{™=2 D¢ KOm2 = Vi LV,

= V{ and V852 V82 = V&2

Theorem 5 10:

Let K = K%™~! K € K[V{ x V&~}] be a multistage network. Let K be simply
partitionable isomorphic with block networks K§™2 € K[V{y x V857 and
KP™2 € K[VP x VB7%. Let K™ ! be fixed in CP~'. Let V™! A
{va e vp-! I vy € V&j—2, <vp,v,> € wm_Q'm_l} and Vg7! a {va evg!
| v € VP!, <wp,v,> € CPY}, j=0,1.
Then V{5 LWVA™! = V! and V85! LIVET! = vE~L
Proof:
(1) Theorem 5.9 = VZ5? M V&;Q = Vg2

(2: (1) and w™2™"! permutation correspondence = V' UVT!

(3: (2) and CP~! permutation correspondence = V&5! LIVE! = A/
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n

The following is an algorithm to synthesize simply partitionable networks. Let

K = KO,m-l

=Kocuw?oKlow!? --:K® ! be a multistage network. Let

|V1°| = N, m = logy,N. The construction of the partitionable network will be given in

terms of constraints on K’ and the w

*T+1 ecorrespondences.

Algorithm 5.11:

Let K = K%™~! be a multistage network. To construct a simply partitionable

network the following constraints on K’ and on w

TT+1 correspondences must be

satisfied.

(1)

(2)
(3)

Proof:

(2):

(3):

For r=0,1,..m—2, K’ must have components Kj and K] where Kj €
K[V[o x V§o| and K] € K[V[; x V§].

K{ =~K].

dK{) e WM (VEY x  V[p) =s(K§), r=m—-1,m-2..1. Where
WwVo, x V)  AwM(Vo,xVy) and Aoz ld {v,€db)]

<vuvy> €, v, € A}

Algorithm constraint (1) = K" has two components Kg and Ki,
r=0,1,...m-—2.
(1) and Algorithm constraint (1) = K° 0 w®' oK' 0o - - - K™ Ce

Ko KD) o o (Ko K}) ow'?o -+ (KR 2oKP?),

(2) and Algorithm constraint (3) and property of o distributing over 0 =
Kouw?'oKlo +«-K™?2 Cc (K§oK?) 0w o (Ko K)) ow!?c
o (KPTPoKPT) = (K§ o W™ (Vg,o x Vig) o Kg o

VS, x Vi) o +or KPTF) o (K 0w (VG x Vi) o K| o

wl'2 (Vé),l X Vl2’1) (o2 K{ﬂ-—?).
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(4):  Theorem 5.10 shows that since K™~ is a permutation network any
CP~1 € C™! can be used in fixing K™ 1.

(5): (3)and (4) = K°®™1is simply partitionable.

(6):  Algorithm constraint (2) = the components of K§ and K] are
isomorphic = Kj =~ KJ.

(7):  (5) and (6) K®%™~! is simply partitionable isomorphic network.

r

A note on the notation in this section. Let K" € [V{ x V{] be a network, V{ =
{vo,vl,...vt_l} and V§ = {uo,ul,...ut_l}. Let K; € [V, x V§,], be a component
network V[, = {v,-,v,-,...} and Vg, = {ux,uy,...}. Since K’ is a permutation network
therefore the component Kj is as well, and so it is always possible to relabel the vertices
of Vi and Vg in such a way that the component network has V{, = {vl,vl,vk,...} and
Oa= {ul,u,,uk,...}. By proper encoding V|, = {Popl " P(m—1)-t | p,=0,1} and
Vb,

T
Kpopl © Pm-1)-r"

I

{qoql-"q(m_l)_, | q,=0,l}. Consequently K can be identified as

Definition 5.12:

Let KO™-! € K[VP x V871, be a multistage network. If Kg;,l Peniys IS SIMPLY

partitionable isomorphic with block networks K9f-1!

PoP1 © Pm-1y-g+10 and

Kg;;l‘.l, Py’ T=M—1,m=2,..1, then K is called recursively partitionable

tsomorphic network.
Theorem 5.18:
Let K =K%™ 1 K € K[V? x V&~!] be a multistage network. Let K)le

K[V, x V'], be a simply partitionable isomorphic network with block

networks be’" € K[VB,-’O xV(')'.'fo] and Kf{_z € K[fo,', x V{)‘f,],

j=0,1,..2Mm"N-(-2_1  r—m m—1,...2.
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0 . 0 — 0 -2 1. -2 __ —2 v
Then Vo LV, = V{jand V§% WVER = V§2 :

Proof:

2

77

SOvEN NS

KY%™? o K42 D¢ KP? and K is a permutation network = V{,, vy,

r = V{jand V5o WVE?A = VG2 ::.
i Theorem 5.14: "‘
‘ =
r Let K =K%™!, K€ K[V} x V§7] be a multistage network. Let K?"™~! be -j:-'-
simply partitionable isomorphic with block networks K°r 2 e K[V&.o x V{{,?o] \.‘:'

y
’

and KX € K[V}, xV5A, with K™™' fixed in  C}7),

- .\,-
X j=0,1,...2m-1-{r~2)_1 r=m,m—1,...2. Let V,'l"ﬁ A {va (= V,’J" \_,
. \-,.
, | vo € VBA <vpva> €21} and V5L A& {v,€VE! | v, € V[, NS
g -»

<vpv,> € CI7'}, k=0,1.

7T
'

3
£t

::_ Then Vlrjé LV 1), ] = Vl] and Vg ]10 LJVO] 1 = VB_,jl' ._'\
" Proof: }'E:
! (1):  Theorem 5.13 = V(’)Tfo LJVE,“JQ1 = V{)f,"’. ’
E_E (2): (1) and w2771 permutation correspondence = ViTg WV =Vl ,‘
- (3):  (2) and C{~! permutation correspondence = V& o LVG ! = V§ilL &

n

& The notation of recursively partitionable networks will now change as follows. If

.- Kg;,l - Plaayr is a simply partitionable isomorphic network then the block networks are
. 0.r-1 0.r-1

* denoted aSKPon " Ptm-1)-(r+10 and KPoPn Pm-n-repl? T 1,m-2,..0. If KPoPl Pm-1)-r'
E:': r=m—-1,m—-2,..0 is a nonprime network with two component networks then the

component networks are denoted as K/ 0 and K|

PoP1  *  P(m-1)-(r+1 PoP1 Pim-1)-r+1)]”

'-"'(’(_‘4-{1\‘.-\‘.- SRR AL .f NCACTNOIN ST Ay

Nt AN




| gl MR R e Rl e B Sl A0 B B ot RaC Nal Bab il Al 00 Sl AT b Lt Bt Rab 0 W DS b BV Sl et B it Reh Bt ot il Bt Bad Sk Ndh Rl Sk Bl Rt 0t fab A | THITNTATS TR

f.: 19 )
< "

A
’ 2
. Algorithm 5.15: !
:i .

- - . . .
g‘. Let K=K%" ! be a multistage network. To construct a recursively ~+-J
*‘ 'n*\-
L¥Y] — L3 . \ \

¢ partitionable network K = K%™~! the following constraints on K’ and on «"+! EaeY
‘\ t.

r correspondences must be satisfied. :

. A
_ _ r r NS

. (1)  For r=0,1,...m—2, Ko, - - Pt MUSt have components K{ , P10 RS
b A
o r - .
L and Kpopl © P e
-

r 2) K! ~K! o
I PoP1  * Pim-1-(r+1)0 PoP1  Pm-1)—+yl* Ry
Vo ..‘\4: 4
T ' r—1 o]

o ) VK, peys 3! two component networks KiD!. Paagen0 204 )
- r-1 ~ r-1 , sr—1 g
Kpopx “ Pm-1-r+)1 => (d(I<PoP1 Co P(m-x)—(r+1)0) U d(I\Popl © P10l )) NE o

i ‘\‘:\
g r—1r r—1 r —_ r Sy
:',u ow (VO.Pon P11 = Vl.Pon P(m—l)—r) - S(KPon p(m—l)—r)' :ﬁ:
. v, e

.

. =m-—1,m-2,...1. e
2%
Proof: - ,.'f"'

E:‘:" A. Show P__, holds. P _, : K°®~!is simply partitionable isomorphic with :::;::
R

blocks K§™~2 and K9™~2,

3
L't
‘N,

L]

” (1):  Algorithm constraint (1) = Ky, . Pam1yr 185 tWO components :‘\:
NN

- r sT —_ - oA
::'* KPon T Pame1-+1)0 and I\Popl “ Pim-1-(r+n]? r—O,l,...m 2. :: ';
ot \l',‘l'
2

‘ (2): Do the following process for r=0,1,...m—2 if KJ, . .. Pty 300
"o o
" Kpp, D] satisfly Algorithm (3) then form Ko, - Py USING the j::;:_::
AN

E_Z' o operation. Continue this process repeatedly until get components K§ ::'_::-:

and Kj. .t
N RN
N (3):  (2) and Algorithm constraint (1) = K%o «®'oK!o -+ - K™ 2 Ce¢ No
IR

- - ..-
S (Ko K?D) oo (KIoK}) ow'?o -+ (KR 20KP?), REN
(4):  (3) and property of o distributing over0 = K%o0uw®!' oK'o -+ - K™ 2 ';"

. L)

¢ m— ~m—2 oy
E,f{ Ce (KgaKf)owo"o(K(}aK,l)ow"Qo e (KR 2o KM = :::
5

E .‘\“:‘
. ..\‘-
:_\:;.

. . B S
Y AR \\. ,'-.\.:\.u_..-\a\. SRR \ o
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SR D A . N

AR SN URAATRN ORI '".r".r“.-“)\.-".-\.u';,-“,-",-:,\;.\¢\..\_.'-

R



-
“.a e

esrad
)

,.
I,

N
BN

..
A‘.- IJ
B
n"s

n

TR

~ .-

oo

ol 7
\'-'-'

(5):

(6):
(7):

(8):
B. Show P,_, assuming P, holds. P,_,: K%r~1

(1):

(2):

20

(K 0w (V(o),o x Vll,o) o K5 ow!? (Vcl),o X Vfo) o - KP?) o (KY

o w! (Vg_l X Vll'l) o K} ow'? (Vcl)'l X Vfl) o +-+ KP?.

Theorem 5.14 shows that since K™~! is a permutation network any

CcM-1 € C™! can be used in fixing K™,

(4) and (5) = K%™-!issimply partitionable.

Algorithm constraint (2) = the components of K§ and K| are isomorphic

= KJ = K]|.
(6) and (7) K%™~! is simply partitionable isomorphic network.

PoP1 " Pm-1)-(r-1)

isomorphic with blocks K§.1-2 ,  sand Kpp2 o, r=m,m-1....2.
Algorithm constraint (1) = K:,‘opl - Pmiek has two components
k k —_—re p—
KPoPl T P10 and Kpopl U Pime- -y for k=r 2,r=3,...0.
r=m,m—1,...2,
—r D p— . -k
For k=r—2,r—3,...0 do the following process. If K;, Pty a1 and
Kz,‘opl. - Pemagy S2tisTY Algorithm constraint (3) then combine them

k

using o to form Kp, o

. Continue repeatedly this process until

Kk

PeP: -+ Pmoip-_y 1S formed.

(2) and Algorithm constraint (1) = Kgopn Pty C

0,1 0 1 1 . e
w (VO,Popn' " Pm-1-(r-1) x Vl,pop. 'P(m—l)—(r-l)) © KPon © Pm-1)-(r-1) ©

r-2 -0 0
KPoP: Pim-1)-(r-1) gc (I\Popx " Pim-1)-(¢ PaoP1 'P(m-n-(r)l) ©

0,1 0 1
w (VO,pop, " Pim-1)-(r-1) X vl.Pon P(m—x)—(r-x)) ©

)oaK

1 1
(KPOP! * Ptm-1)-r)0 c KP@I P(m-l)—(r)l) ©

rr—2 -2 — 0
(I\Popn " Pm-1)-(r)0 4 KPoP: N P(m-n—(r)l) - (KPopx P ©

0,1 0 1 1 .
w (VO.Pon P10 % Vl.DoP\ p(m—l)—(r)O) OKPoPn Pm-1-n® ©

R ..,’\.‘.‘..\-.\-._'-‘_..:‘.

b N L

s r'-‘

N

is simply partitionable
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-2 0
KPon Co P(m—l)—(r)O) o (KPoPn © Ple-1-n]
0,1 (vO 1 1 ..
w (vo.popx C Pl X Vl.PoPn T P(m—l)—(r)l) © KPoP: Pyl ©
r—2
Kpopl T P(m—l)—(r)l)'
. 0
(3.1): P holds =K, =, . o
0,1 0 1 1 « o
w (VO.POPI " Pim-1)-r X VI.POPX T p(rn—l)—r) © Kpopl 0 Pim-1)-r ©
r—1 0 0
KPon T Pm-1)-r Ce (Kpupx Pty @ KPoP: T P(m-l)—(r+l)l) ©
0,1 (v/0 )| ..
W™ (VO pep, - - Parir X VLPoP1 - - Pryr) ©
-1 r—1
(Kpop, T P (r+1)0 o KPoP: C P(m—l)—(r-ﬂ)l)'
o). -0 0,1 (v/0 1
(3.2): (3.1) = I‘popx Pam-ny-r O % (VO.Popx Pt X VI,Pon P(m—l)—r)
1 .o r—2
© KPOP) " P{m-n-r © Kpopl T Pm-1yr —
0 s0
(I\Popl C Paen-an)0 o hPoPn Co P(m—l)—(r+1)1) ©
0.1 0 1 I
w (VO,popl T Pim-1)-(r+1) X Vl,Pon o p(m—l)—(rﬂ)) ©
-T2 r—2
(I\Popl " Pm-1)-r+1)0 o KPon “ Pan--@+1)} )
. . . . 0
(3.3): Substituting (3) into (3.2) = Kpp, - puiiey ©
0.1 r0 1 1
w™ (W O.poP) Pim-1)-tr-1) < Vl.PoP1 : 'P(m-n)—(r—n) © KPoP1 Pim-1-tr-1) &
2 1 0
' S .
Kipr  pimiegn S€ Ugoo(Kpom Pimty-en) ©
11
R 0,1 0 ) 1 B
i)__%w (VO,Popn © 7 Pime- 1) (r+1)Y) X vl.Pon P(m-x)—(r+1)\l) ©
11 1 11 0
.. « o r— ..
i gOO(Kpopx  Paeenii) © ijgoo(Kpopl P
) . e . 0
(3.4): (3.3) and property of o distributing over o = K, ...p0 0
0,1 0 1 1
w (VO.POPI Pm-1)-(r-1) x VPon‘ p(m—l)—(r—l)) © PoP) Pm-1-¢-1) ©
2 n W]
r— ..
KPoPn P(m-1)-(-1) gc ij__c_700(1<Pc:131 e P(m—l)-(r+1)‘l) ©
11
. 0,1 0 1
“__E'go w (VO.Popl Pim-1)-(r+1)}) x Vl.Pon P(m—l)—(rﬂ)‘])
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ijgoo(Kpop. - Pteeni)) © ijgoo(Kpop, Pl = ::"::;:
F p 0 0,1 (v0 1 i
~' . ’ .. . N -°
il.goo (Kpopx © Paen-aii © Y (VO.Popx - Pl X Vl.Pon "P(m~l)—(r+|)|l) © .-:-:-"
2=
< ce. KI-2 v 2
g (I\Popl T P(m—x)—(rﬂ)ij) © KPon T P(m-n)—(rﬂ)ll)' :':
: ’
AN
. (5):  The rest is similar to the proof of Pp,_, steps (5)}~(8). s
e e
- i ..
o In this section the multistage networks were discussed. The multistage network model '.:;"_
was developed and then two types of multistage partitionable networks were defined. :L:_::j
e )
b Two methods were developed each synthesizing a class of multistage partitionable T-',‘
o
" network. SO
*; s
~ BAY
v o
_ SAN
ﬁ ‘.v-
VI Conclusions N
. LY
i =
: R
Two methods are used to speed up the execution of computational task. One is
r. _::
new technology insertion and the other is the exploitation of parallelism in the e
c., S
:',: computation. To take an advantage of the parallelism in a task requires the utilization *:-:-'.-
. of parallel computer architectures. At a certain high level of abstraction a .
»e, '..'-?.
e reconfigurable parallel computer system is represented as a graph structure where the Sy
- N
& node represent processors, memories, or other devices and the labeled edges represent ~oy
! it
the communication states of the network. _
M In this research a topological property of interconnection networks partitionability o
. was studied. The uses and advantages of partitionable networks are presented in a N
q. 'h
number of publications and summarized in the introduction. In particular a general ™Y
::, graph/algebraic model of multistage network was developed. Two types of
J': s
partitionable multistage networks were formally defined. Two methods were developed, i
E‘ "'-\-‘
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one for the synthesis of simply partitionable networks and another for the synthesis of
recursively partitionable multistage networks. The algorithms are presented for the
case where the number of block networks is a power of two, however they can easily be

generalized to the power of any integer.
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Figure 2:
An example of an arbitrary multistage network.
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